
1111111111111111111111111111111111111111111111111111111111111111111111 

(12) United States Patent 
Acikmese et al. 

(54) METHOD AND APPARATUS FOR POWERED 
DESCENT GUIDANCE 

(75) Inventors: Behcet Acikmese, Altadena, CA (US); 
James C. L. Blackmore, Los Angeles, 
CA (US); Daniel P. Scharf, Altadena, 
CA (US) 

(73) Assignee: California Institute of Technology, 
Pasadena, CA (US) 

(*) Notice: 	Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 691 days. 

(21) Appl. No.: 12/639,874 

(22) Filed: 	Dec. 16, 2009 

(65) 	 Prior Publication Data 

US 2010/0228409 Al 	Sep. 9, 2010 

Related U.S. Application Data 

(60) Provisional application No. 61/201,866, filed on Dec. 
16, 2008, provisional application No. 61/164,338, 
filed on Mar. 27, 2009, provisional application No. 
61/183,508, filed on Jun. 2, 2009, provisional 
application No. 61/286,095, filed on Dec. 14, 2009. 

(51) Int. Cl.  
B64G 1136 (2006.01) 
B64G 1124 (2006.01) 
G05D 1106 (2006.01) 
G05D 1108 (2006.01) 
G06F 19100 (2006.01) 

(52) U.S. Cl. 
USPC 	.............. 701/16; 701/3; 701/4; 701/5; 701/6; 

701/13; 701/18 

(1o) Patent No.: 	US 8,489,260 B2 
(45) Date of Patent: 	Jul. 16, 2013 

(58) Field of Classification Search 
USPC ................... 701/3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

701/13, 14, 16, 18, 23, 26 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,445,653 A * 	5/1984 Schwaerzler ............. 244/110 D 
2008/0023587 Al* 	1/2008 Head et al .................. 244/158.4 

OTHER PUBLICATIONS 

Scott R. Ploen and Behcet Acikmese, Convex Programming 
Approach to Powered Descent Guidance for Mars Landing, Sep.-
Oct. 2007, Journal of Guidance, Control, and Dynamics, vol. 30, No. 
5, pp. 1353 thm 1366.* 
Acikmese et al., "A Powered Descent Guidance Algorithm for Mars 
Pinpoint Landing," AIAA Guidance, Navigation, and Control Con-
ference, San Francisco, CA, Aug. 15-18, 2005, pp. 1-17. 
Acikmese, et al., "Convex Programming Approach to Powered 
Descent Guidance for Mars Landing," AIAA Journal of Guidance, 
Control and Dynamics, vol. 30, No. 5; 2007, pp. 1353-1366. 
Acikmese, et al., "Enhancements on the Convex Programming Based 
Powered Descent Guidance Algorithm for Mars Landing," Proceed-
ings of the AIAA Guidance, Navigation and Control Conference 
2008, Aug. 18-21, 2008, 16 pages. 

(Continued) 

Primary Examiner Thomas Black 
Assistant Examiner Dale W Hilgendorf 
(74) Attorney, Agent, or Firm Gates & Cooper LLP 

(57) ABSTRACT 
A method and apparatus for landing a spacecraft having 
thrusters with non-convex constraints is described. The 
method first computes a solution to a minimum error landing 
problem for a convexified constraints, then applies that solu-
tion to a minimum fuel landing problem for convexified con-
straints. The result is a solution that is a minimum error and 
minimum fuel solution that is also a feasible solution to the 
analogous system with non-convex thruster constraints. 

12 Claims, 12 Drawing Sheets 

START 

COMPUTE A MINIMUM LANDING ERROR102 
DESCENT SOLUTION FOR THE SPACECRAFT 
SUBJECT TO A CONVEXIFIED NON-CONVEX 

4RUST CONSTRAINT, WHEREIN THE DESCENT 
OLUTION INCLUDES A LANDING ERROR RANG 

DETERMINE A THRUST PROFILE FOR THE 
SPACECRAFT SUBJECT TO THE NON-CONVEX 
CONSTRAINT FROM THE COMPUTED MINIMUM 
ANDING ERROR DESCENT SOLUTION FOR THE 
SPACECRAFT SUBJECT TO THE CONVEXIFIED 

NON-CONVEX CONSTRAINT 

COMMAND SPACECRAFT THRUSTERS 
ACCORDING TO THRUST PROFILE 

END 



US 8,489,260 B2 
Page 2 

OTHER PUBLICATIONS 

Arvidson et al., "Mars Exploration Program 2007 Phoenix landing 

site selection and characteristics," Journal of Geophysical Research, 
vol. 113, 2008, pp. 1-14. 
Blackmore et al., "Minimum-Landing-Error Powered-Descent Guid-
ance for Mars Landing Using Convex Optimization". Journal of 
Guidance, Control and Dynamics, vol. 33, No. 4, Jul.-Aug. 2010, pp. 
1161-1171. 
D'Souza, "An Optimal Guidance Law for Planetary Landing," Pro-
ceedings of the AIAA Guidance, Navigation and Control Conference 
1997, pp. 1376-1381. 
Fahroo, et al., "Direct Trajectory Optimization by a Chebyshev 
Pseudospectral Method," Journal of Guidance, Control, and Dynam-
ics, vol. 25, No. 1, 2002, pp. 160-166. 
Klumpp, "Apollo Lunar Descent Guidance." Automatica, vol. 10, 
1974, pp. 133-146. 
Knocke et al., "Mars Exploration Rovers Landing Dispersion Analy-
sis." Proceedings of the AIAA/AAS Astrodynamics Specialist Con-
ference, 2004, pp. 1-17. 
Meditch, "On the Problem of Optimal Thrust Programming for a 
Lunar Soft Landing," IEEE Transactions on Automatic Control, vol. 
AC-9, No. 4, 1964, pp. 477-484. 
Najson et al., "A Computationally Non-expensive Guidance Algo-
rithm for Fuel Efficient Soft Landing," AIAA Guidance, Navigation, 
and Control Conference, San Francisco, CA, Aug. 15-18, 2005, pp. 
1-15. 

Ploen et al., "A Comparison of Powered Descent Guidance Laws for 
Mars Pinpoint Landing," AIAA Guidance, Navigation, and Control 
Conference, Keystone, CO, Aug. 21-24, 2006, pp. 1-16. 
Sostaric et al., "Powered Descent Guidance Methods for the Moon 
and Mars," AIAA Guidance, Navigation, and Control Conference, 
San Francisco, CA, Aug. 15-18, 2005, pp. 1-20. 
Steinfeldt et al., "Guidance, Navigation, and Control Technology 
System Trades for Mars Pinpoint Landing," Proceedings of the AIAA 
Guidance, Navigation and Control Conference 2008, Aug. 18-21, 
2008, pp. 1-16. 
Sturm, "Using SeDuMi 1.02, a MATLAB Toolbox for Optimization 
Over Symmetric Cones," Department of Economics, Tilburg Univer-
sity, The Netherlands. Aug. 1998-Oct. 2001, pp. 1-30. 
Sturm, "Implementation of Interior Point Methods for Mixed 
Semidefinite and Second Order Cone Optimization Problems," 
Department of Economics, Tilburg University, The Netherlands. 
Aug. 2, 2002, pp. 1-41. 
Topcu et al., "Fuel Efficient Powered Descent Guidance for Mars 
landing," AIAA Guidance, Navigation, and Control Conference, San 
Francisco, CA, Aug. 15-18, 2005, pp. 1-11. 
Vandenberghe et al., "Semidefinite Programming," SIAM Review. 
vol. 38, No. 1. 1995, pp. 49-95. 
Vlassenbroeck et al., "A Chebyshev Technique for Solving Nonlinear 
Optimal Control Problems," IEEE Transactions on Automatic Con-
trol, vol. 33, No. 4, 1988, pp. 333-340. 
Wolf et al., "Performance Trades for Mars pinpoint landing," IEEE 
Aerospace Conference paper #1661, Version 2, Jan. 9, 2006, pp. 1-16. 

* cited by examiner 



U.S. Patent 	Jul. 16, 2013 	Sheet 1 of 12 	 US 8 ,489,260 B2 

N 

o r l 

	

1 	~ 

—C:  

	

r 	i 	e 

	

1 	 1 

	

1 	 1 	~ 

1 

1 
1 

	

1 	 ~ 

	

1 	 1 

	

1 	1 

	

1 	1 

	

1 	1  

	

1 	1  

1
f1 

1 
I 	1 U 
r 	N 
1 1 	1 ~ 

1 	i 

~ 	 s 	(0 
1 E 

	

I 	 1  

	

1 	1 	fl. 

	

i 	1 

	

1 	1 	I! 

	

1 	F 	s 
1 

	

I 	 / 

	

1 	/ 

	

1 	1 	1 
/ 

	

/ 	/ 4 

	

~ 	1  I 

	

1 	F/ 

	

1 	11 

	

1 	Y 

5 ~  

11 d 

r 
I~ 

r 

	

I 	 ~ 

	

I 	O 

	

r 	~ 

`_ 

V 



U.S. Patent 	Jul. 16, 2013 	Sheet 2 of 12 	 US 8,489,260 B2 

w dx 	
N 

V 



U.S. Patent 	Jul. 16, 2013 	Sheet 3 of 12 
	

US 8,489,260 B2 

M 

LL 
GI BI 	I1 

0 

 

U 
M 

Woa 

I 
0 

ca 
M 

d 
LL 

M 
4 ~ 	• 

LL 

W7  



U.S. Patent 	Jul. 16, 2013 	Sheet 4 of 12 	 US 8 ,489,260 B2 

A il 

LL 

1 
P pup fi$p 14~qg,4 plig 4&W isms li 

.............:... 

 

.......... .  

xrN 

V 

CIO•ice 

} 

}s.riu. 

iF 
rc.` ~cos

~ cif 

LL 

8 

y
~ 

	 M 
F 

LL 

............. i.. 	_...., _._....... 
7fi }- 9W 

rt 

s ~ 

4AF'~ 	 F 
f 

d 

W 'dai ~ 

8 r 

LU 

W 

C 	• 
rn 



U.S. Patent 	Jul. 16, 2013 	Sheet 5 of 12 	 US 8 ,489,260 B2 

~~y [P 
lV 

F 

f r 	t • 

f 

jt 

° t 

°O O 
C> t 	• 	r 	• 

M1°f 

f 
r. L 

T 

Jg. 

° 	

ar. 

f• 

C>  .iFt 	

e ! of 

S 	• 	e 	r 	! 	r ee! 	 VW/ 

a 0 
0 co 

w O 

0 

~ro1 

g]~ 

E 	d 
P 



W rx 

F 

r 

3 
u')  

e 9 

gtM1U ~h21,>3!3 

E 	e UjE E 

F ! LOl M i 

~ + f 

4 i 

LL 

i 

,1. 

LL 

U.S. Patent 	Jul. 16, 2013 	Sheet 6 of 12 	 US 8 ,489,260 B2 

a In 

LL 

a o~ 

z 
LO 

~9W6(8$7RdWj. y. 

O 

LO 

LO 

LL

0 	
4 	V 

0" `A Mkma e-pw very 

0 

I 	 t 
.. 	 H, 	 .. 

W5sP PLM flak  'ean pua 00M mruk 

§ i 	 1 
§ hy  V 

LO  J 

E 	r 
s 

LO 
k 

taI 	 UI `VOIIIUCU 



U.S. Patent 	Jul. 16, 2013 	Sheet 7 of 12 	US 8,489,260 B2 

(W~jqajoj w0j) enugisqO !VU!J 

a 

tL 

0 
E 	ftftft*. 

LL 
53 

4 



U.S. Patent 	Jul. 16, 2013 	Sheet 8 of 12 	 US 8,489,260 B2 

START 

COMPUTE A MINIMUM LANDING ERROR 	702 
DESCENT SOLUTION FOR THE SPACECRAFT 
SUBJECT TO A CONVEXIFIED NON-CONVEX 

THRUST CONSTRAINT, WHEREIN THE DESCENT 
SOLUTION INCLUDES A LANDING ERROR RANG 

DETERMINE A THRUST PROFILE FOR THE 	
704 SPACECRAFT SUBJECT TO THE NON-CONVEX 

CONSTRAINT FROM THE COMPUTED MINIMUM 
LANDING ERROR DESCENT SOLUTION FOR THE 
SPACECRAFT SUBJECT TO THE CONVEXIFIED 

NON-CONVEX CONSTRAINT 

706 

COMMAND SPACECRAFT THRUSTERS 
ACCORDING TO THRUST PROFILE 

END 

FIG. 7 



U.S. Patent 	Jul. 16, 2013 	Sheet 9 of 12 
	

US 8,489,260 B2 

ENTER 

TE A MINIMUM FUEL DESCENT SOLUT 
	802 

FOR THE SPACECRAFT SUBJEC TO THE 
CONVEXIFIED NON-CONVEX CONSTRAINT AND 

THE LANDING ERROR 

DETERMINE THE THRUST PROFILE FOR THE 804 
SPACECRAFT SUBJECT TO THE NON-CONVEX 

CONSTRA TINT FROM THE COMPUTED MINIMUM 
FUEL DESCENT SOLUTION FOR THE 

SPACECRAFT SUBJECT TO THE CONVEXIFIED 
NON-CONVEX CONSTRAINT 

END 

FIG. 



U.S. Patent 	Jul. 16, 2013 	Sheet 10 of 12 	US 8,489,260 B2 

9( 

X Z 

FIG. 9 

300 
0 

Y 



U.S. Patent 	Jul. 16, 2013 	Sheet 11 of 12 	US 8,489,260 B2 

TRANSFER 
ORBIT SUN 

1004 
LOAD SHEDDING 
BATTERY CHARGIN 	1024 1022 

CMDS 	CMD 	
TORQUE DECODER 	MTCU 1070 

SENSOR UNIT COIL 

1020 
1006 

1020--1 102 
1030 912 

LAND THRUSTERS) 
ACQUISITION SUN THRUSTER 

SENSOR(S) VALVE 1032 
1036 DRIVER UNIT 

1072 1062 
ACS THRUSTER 

1008 
WHEEL TORQUE COMMANDS 

INERTIAL PFFnIMEASURFMENT  

-- 

 

REFERENCE Do 
104 UNIT 1064 WHEEL DRIVE WHEEL DRIVE 

101 ELECT. 1038 	ELECT. 

"RANSFER ORBIT 1042 

PLANETARY 
SENSOR(S) MOMENTUM 1044 MOMENTUM 

WHEEL ASSY WHEEL ASSY 
1012 

OPERATIONAL 
ORBIT SPACECRAFT 

106 

PLANETARY CONTROL 
DRIVE 

SENSOR(S) PROCESSOR FEEDBACK 
1014 

1068 

NORMAL MODE 1046 
VIDE ANGLE SUN N. SOLAR 

SENSOR(S) WING DRIVE 

1016 
1048 

S. SOLAR 
MAGNETO- WING DRIVE 
METER(S) 

1018 

STAR SENSOR(S) 

1060 

1002 	 1058 	1 
1054 	 ° ° TO GROUND 

TELEMETRY 	I --- 	 STATION 

FIG. 10 	 TM ENCODER 
 ON 

 

FEEDBACK 	 UNIT 	I 

1056 



U.S. Patent 	Jul. 16, 2013 	Sheet 12 of 12 	US 8,489,260 B2 

1102 
	

1100 

	

1104A 
	

104B 	
1130 

	

GENERAL PURPOSE 
	

SPECIAL PURPOSE 
PROCESSOR 
	

PROCESSOR 

s 1106 

MEMORY 	1108 1110 

OS 	 COMPUTER 
PROGRAM 

GUI MODULE 	 COMPILER 

1118A 	 1112 

1106 

1120 

1124 

PRINTER 

1128 

11188 
	1122 	1 	1116 	 1114 

GUI 	I I I D 
POINTING I I 	KEYBOARD 

FIG. 11 



US 8,489,260 B2 
1 	 2 

METHOD AND APPARATUS FOR POWERED 	ministic convergence. This makes the approach amenable to 
DESCENT GUIDANCE 	 onboard implementation for real-time applications. 

CROSS-REFERENCE TO RELATED 
	

SUMMARY OF THE INVENTION 
APPLICATIONS 

This application claims benefit of the following U.S. Pro-
visional Patent Applications, each of which i s incorporated by 
reference herein: 

U.S. Provisional Patent Application No. 61/201,866, 
entitled "MINIMUM LANDING ERROR POWERED 
DESCENT GUIDANCE FOR PLANETARY MISSIONS," 
by James C. Blackmore and Behcet Acikmese, filed Dec. 16, 
2008; 

U.S. Provisional Patent Application No. 61/164,338, 
entitled "MINIMUM LANDING ERROR POWERED 
DESCENT GUIDANCE FOR PLANETARY MISSIONS," 
by Daniel P. Scharf, James C. Blackmore and Behcet Acik-
mese, filed Mar. 27, 2009; 

U.S. Provisional Patent Application No. 61/183,508, 
entitled "A TABLE LOOKUP SOLUTION ALGORITHM 
OF THE OPTIMAL POWERED DESCENT GUIDANCE 
PROBLEM FOR PLANETARY LANDING," by James C. 
Blackmore, and Behcet Acikmese, filed Jun. 2, 2009; and 

U.S. Provisional Patent Application No. 61/286,095, 
entitled "MINIMUM LANDING ERROR POWERED 
DESCENT GUIDANCE FOR MARS LANDING USING 
CONVEX OPTIMIZATION," by James C. Blackmore, Beh-
cet Acikmese, and Daniel P. Scharf, filed Dec. 14, 2009. 

STATEMENT OF RIGHTS OWNED 

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the 
provisions of Public Law 96-517 (35 U.S.C. §202) in which 
the Contractor has elected to retain title. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to systems and methods for 

guiding spacecraft, and in particular to a system and method 
for guiding a spacecraft to a soft landing on a planetary 
surface. 

2. Description of the Related Art 
To increase the science return of future missions to Mars, 

and to enable sample return missions, the accuracy with 
which a lander canbe delivered to the Martian surface must be 
improved by orders of magnitude over the current capabili-
ties. Towards this goal, our prior work developed a convex 
optimization based minimum-fuel powered descent guidance 
algorithm. Here, we extend this approach to handle the case 
when no feasible trajectory to the target exists. In this case, 
our objective is to generate the minimum landing error tra-
jectory, which is the trajectory that minimizes the distance to 
the prescribed target while utilizing the available fuel opti-
mally. This problem is inherently a non-convex optimal con-
trol problem due to a nonzero lower bound on the magnitude 
of the feasible thrust vector. We first prove that an optimal 
solution of a convex relaxation of the optimal control problem 
is also optimal for the original non-convex problem, which 
we refer to as the lossless convexification of the original 
non-convex problem. Then we show that the minimum land-
ing error trajectory generation problem can be posed as a 
convex optimization problem, inparticular as a Second-Order 
Cone Program, and solved to global optimality with deter- 

To address the requirements described above, the present 
invention discloses a method and apparatus for computing a 
thrust profile to land a spacecraft at or near a surface target, 
wherein the spacecraft is subject to a non-convex thrust con- 

10 straint. In one embodiment, the method comprises the steps of 
computing a minimum landing error descent solution for the 
spacecraft subject to a convexified non-convex constraint, 
wherein the descent solution includes a landing error, and 
determining the thrust profile for the spacecraft subject to the 

15 non-convex constraint from the computed minimum landing 
error descent solution for the spacecraft subject to the con-
vexified non-convex constraint, and commanding the space-
craft thrusters according to the thrust profile. In a further 
embodiment, the step of determining the thrust profile for the 

20 spacecraft subject to the non-convex constraint from the com-
puted minimum landing error descent solution for the space-
craft subject to the convexified non-convex constraint com-
prises the steps of computing a minimum fuel descent 
solution for the spacecraft subject to the convexified non- 

25 convex constraint and the landing error, and determining the 
thrust profile for the spacecraft subject to the non-convex 
constraint from the computed minimum fuel descent solution 
for the spacecraft subject to the convexified non-convex con-
straint. 

30 	In a still further embodiment, the apparatus comprises a 
processor for computing a minimum landing error descent 
solution, comprising a memory for storing instructions 
including instructions for computing a minimum landing 
error descent solution for the spacecraft subject to a convexi- 

35 lied non-convex constraint, wherein the descent solution 
includes a landing error, and for determining the thrust profile 
for the spacecraft subject to the non-convex constraint from 
the computed minimum landing error descent solution for the 
spacecraft subject to the convexified non-convex constraint, 

40 and for commanding the spacecraft thrusters according to the 
thrust profile. The apparatus further comprises thrusters for 
applying the commanded thrust to the spacecraft. 

BRIEF DESCRIPTION OF THE DRAWINGS 
45 

Referring now to the drawings in which like reference 
numbers represent corresponding parts throughout: 

FIG.1 is a diagram illustrating glideslope constraints for a 
minimum landing error powered descent. The glideslope con- 

50 straint requires the spacecraft to remain in a cone defined by 
a minimum slope angle a. In a minimum landing error case, 
the apex of the cone coincides with the landed position of the 
spacecraft, rather than the original target. 

FIG. 2 is a three dimensional plot of an optimal trajectory 
55 generated using a minimum landing error targeting approach 

for Case 1, with ro [1500 0 2000,] T  to —[75 0 100]' (units in 
meters and meters/second, respectively). In this case, a fea-
sible solution exists, so the prioritized minimum landing error 
algorithm returns the minimum fuel solution to the target. 

60 FIGS. 3A-3H are diagrams presenting the result of the 
minimum landing error targeting approach for the initial con-
ditions described with respect to FIG. 2. 

FIG. 4 is a three dimensional plot of an optimal trajectory 
using a minimum landing error targeting approach for Case 2 

65 with ro=[1500 0 2000,] T  to— [-75 40 100]' (units in meters 
and meters/second, respectively). In this case, no feasible 
solution to the target exists, so the minimum landing error 
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solution approach returns the solution that minimizes the final 
distance to the target, which is 268 meters. 

FIGS. 5A-5H are diagrams presenting the result of the 
minimum landing error targeting approach for the initial con-
ditions described with respect to FIG. 4. 5 

FIG. 6 is a diagram illustrating the dependence of mini-
mum distance from the target on time of flight for a typical set 
of initial conditions. The relationship is unimodal and has an 
optimum at 56.35 seconds. The Golden Search determines 
the optimum to be 55.83 seconds, which is an error of only 10 

0.9%. 
FIG. 7 is a diagram presenting illustrative method steps that 

can be used to command the thrusters to land the spacecraft. 
FIG. 8 is a diagram presenting exemplary method steps that 

can be used to determine the thrust profile for the spacecraft 15 

subject to the non-convex constraint from the computed mini- 
mum landing error descent solution for the spacecraft subject 
to the convexified non-convex constraint. 

FIG. 9 is a diagram of an exemplary spacecraft. 
FIG. 10 is a diagram depicting the functional architecture 20 

of a representative spacecraft guidance and control system. 
FIG. 11 is a diagram depicting an exemplary computer 

system that could be used to implement elements of the 
present invention at a ground station. 

25 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

In the following description, reference is made to the 
accompanying drawings which form a part hereof, and which 30 

is shown, by way of illustration, several embodiments of the 
present invention. It is understood that other embodiments 
may be utilized and structural changes may be made without 
departing from the scope of the present invention. 
I. Introduction 	 35 

(Note: This application references a number of different 
publications as indicated throughout the specification by ref-
erence numbers enclosed in brackets, e.g., [x] or the words 
"Ref." or "Refs.". A list of these different publications ordered 
according to these reference numbers can be found below in 40 

the section entitled "References." Each of these publications 
is incorporated by reference herein.) 

The science return of previous missions to the surface of 
Mars has been limited by the accuracy with which a lander 
can be delivered to the surface. Landing accuracy is charac- 45 

terized by the 3-sigma landing ellipse, which defines the 
region around the target in which landing can be guaranteed. 
The size of this ellipse (major axis) was approximately 150 
km for Mars Pathfinder and 35 km for the Mars Exploration 
Rovers. The 2009 Mars Science Laboratory mission aims to 50 

achieve a landing ellipse of around 10 km. This means that 
landing site selection is driven by the need to find a safe 
landing site, rather than by science goals. In other words, 
landing sites must be large, flat, and relatively rock- and 
crater-free areas to ensure safe landing. These regions are 55 

usually not the sites with the maximum science return. For 
example, in the recent Phoenix mission, orbital images taken 
months before the landing showed a higher-than-expected 
concentration of large rocks at the primary landing site. This 
required a switch to an alternate landing site, which may not 60 

have been necessary if a more accurate landing were possible. 
Accurate landing is also an enabling technology for Mars 

sample return missions. One concept for such a mission 
would involve a first spacecraft gathering samples, with a 
second spacecraft arriving at Mars later to return the sample 65 

to Earth. For this to be possible, the second spacecraft has to 
land close to the first in order to enable transfer of the sample  

4 
without prohibitively high power and mobility requirements. 
Achieving this with a sufficiently low level of risk to the 
mission will require dramatic improvements in landing accu-
racy. 

Recent work has focused on achieving pinpoint landing, 
which is defined as landing to within hundreds of meters of a 
target. The pinpoint landing concept consists of an entry 
phase through the Martian atmosphere, during which bank 
angle control is used to target the spacecraft, followed by 
parachute deployment. During the parachute phase, errors 
accumulate due to winds and atmospheric uncertainty. Once 
the parachute is released, the final powered descent phase 
then uses thrusters to land safely at the target. To do so, the 
lander needs to calculate onboard a trajectory from its a priori 
unknown location at parachute cutoff to the target. This pow-
ered descent guidance (PDG) problem is challenging for a 
number of reasons. First, we must guarantee that any feasible 
solution obeys hard constraints, including minimum and 
maximum thrust magnitudes and a minimum glideslope 
angle. The latter constraint also prevents subsurface flight. 
Second, we must guarantee that a feasible solution will be 
found in a matter of seconds. This requirement is derived 
from the duration of the parachute and PDG phases; if the 
PDG algorithm takes too long to find a feasible solution, the 
lander can crash into the surface. Third, to both maximize the 
distance from which the lander can reach the target and mini-
mize the amount of fuel that must be carried onboard, the 
algorithm should find the globally optimal solution. 

A great deal of prior work has developed approximate 
solutions to the powered descent guidance problem Ref. 2, 
and Refs. 5-10. The convex optimization approach poses the 
problem of minimum-fuel powered descent guidance as a 
Second-Order Cone Program (SOCP). This optimization 
problem can be solved in polynomial time using existing 
algorithms that have a deterministic stopping criterion given 
a prescribed level of accuracy. That is, the global optimum 
can be computed to any given accuracy with a deterministic 
upper bound on the number of iterations required for conver-
gence. This is in contrast with other approaches that either 
compute a closed-form solution by ignoring the constraints of 
the problem, propose solving a nonlinear optimization 
onboard, or solve a related problem that does not minimize 
fuel use. The closed-form solution approach results in solu-
tions that do not obey the constraints inherent in the problem, 
such as no subsurface flight constraints; in practice this 
reduces the size of the region from which return to the target 
is possible by a factor of ten or more. 

Nonlinear optimization approaches, on the other hand, 
cannot provide deterministic guarantees on how many itera-
tions will be required to find a feasible trajectory, and are not 
guaranteed to find the global optimum. This limits their rel-
evance to onboard applications. For more extensive compari-
sons of the convex optimization approach to alternative 
approaches, see Refs. 10 and 14. 

We extend the convex optimization approach of Ref. 2 to 
handle the case when no feasible trajectory to the target exists. 
If no feasible trajectory to the target exists, the onboard guid-
ance algorithm must ensure that a safe landing occurs as close 
as possible to the original target, if necessary using all of the 
fuel available for powered descent guidance. In this paper we 
present an algorithm that solves this minimum landing error 
problem. The algorithm calculates the minimum-fuel trajec-
tory to the target if one exists, and calculates the trajectory 
that minimizes the landing error if no solution to the target 
exists. In the spirit of Ref. 2, the approach poses the problem 
as two Second-Order Cone Programs, which can be solved to 
global optimality with deterministic bounds on the number of 
iterations required. This minimum landing error capability 
will be necessary for missions that want to increase landing 
accuracy, but cannot carry enough fuel to ensure that the 
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target can be reached in all possible scenarios . In addition the 
capability will enable safe landing as a contingency in the 
case where when the position and velocity of the lander at 
parachute cutoff is outside of the range of values anticipated 
during mission design . Causes of this misprediction include 5 
higher-than -expected winds or atmospheric parameters, such 
as atmospheric density, being outside of the modeled values. 
Since there remains a great deal of uncertainty in atmospheric 
models, this possibility should be considered in the mission 
design. 10 

The key difficulty in posing the minimum landing error 
problem as a convex optimization problem is the presence of 
non-convex constraints, namely the nonlinear system dynam-
ics and the non-convex thrust constraints . The thrust con-
straints are non-convex because of a minimum thrust magni- 15 
tude constraint , which arises because, once started, the 
thrusters cannot be throttled below a certain level . In Ref. 2, 
we rendered the minimum-fuel guidance problem convex by 
relaxing the non-convex constraints and then proving that any 
optimal solution of the relaxed problem is also an optimal 20 
solution to the full non-convex problem. 

We refer to this approach as lossless convexification. The 
primary theoretic contribution of the present paper is an 
analogous convexification for the minimum landing error 
powered descent guidance problem. We pose two optimiza- 25 
tion problems in which the non-convex constraints have been 
relaxed to yield Second-Order Cone Programs. We solve 
these problems sequentially , and then provide a new analytic 
result that shows that any optimal solution to the second 
relaxed problem is also an optimal solution to the non-convex 30 
minimum landing error problem. This result is then used to 
develop the algorithm that solves the minimum landing error 
problem. Furthermore, we show that the solution uses the 
least fuel of all the optimal solutions to the minimum landing 
error problem. 

This paper is organized as follows: In Section II we review 35 

the convex optimization approach of Ref. 2 to solving the 
minimum-fuel PDG problem before defining the minimum 
landing error PDG problem in Section III. In Section B we 
present the main analytic result of the paper , namely the 
convexification of non-convex control constraints . In Section 40 
IV we present the new algorithm for minimum landing error 
PDG. Section V gives simulation results and Section VI pre-
sents our conclusions. 
II. Minimum-Fuel Powered Descent Guidance 

In this section we review the minimum -fuel powered 45 
descent guidance approach of Ref. 2. The minimum-fuel 
PDG problem consists of finding the thrust profile that takes 
the lander from an initial position and an initial velocity to rest 
at the prescribed target location , and minimizes the fuel mass 
consumed in doing so. So 

The minimum-fuel PDG problem is defined formally in  
Problem 1 . Throughout this paper we use e ~ to denote a col-
umn vector of all zeros except the i t'' row, which is unity. We 
use to denote the two -norm of the vector . We use a.e. to mean 
almost everywhere, that is, everywhere except on a set of 
measure zero. 55 

(Non-convex minimum fuel guidance problem). 	Problem 1 

maxm(tf ) -m(0) = min 
~f 

 aIIT(t)Ildt 	
(1) 60 

f, c 	 f, 	o 

subject to: 

Y(t) = g+Tc (t)lm(t) 'h(t) _ -aIITc (t)II 	 (2) 
65 

0 <A < IITc(t)II <p2 	 (3)  

6 
-continued 

r(t) E XN t e [0, tf ] 	 (4) 

m(0) = m„, er , m(tf ) ? md,y 	 (5) 

r(0) = ro ,r(0) _ro 	 (6) 

ei r(tf) = 0, [e2 e3] T  r(tf) = 4, r(tf) = 0 	 (7) 

Here, gER2  defines the location of the landing target on the 
surface. We use X to define the set of feasible positions of the 
spacecraft , namely the glide slope constraint: 

X={rE R  R 3 : S(r- r(tf)) -rT(r- r(tf)) ,01, 	 (8a) 

where S and c are definedby the user to specify a feasible cone 
with a vertex at r(tf): 

0  0 1 0 	0  
- ~ 0 0 

l~ c=eitanaa>0. 

Here a is the minimum glide slope angle, illustrated in FIG. 
1. The glide slope constraint (8a) ensures that the trajectory to 
the target cannot be too shallow and cannot go subsurface. X 
is a convex set with an interior defined by 

intX: - [xEX:3r>0 such that ~EXiflx-~ <r], 	 (9) 

and the boundary of X is given by 

3X: ={xEX.x~1 int X}. 

The inequalities in (8) ensure that the planned trajectory 
does not fly below the surface and that general cone con-
straints on the lander ' s position are satisfied . These cone 
constraints are used to specify, for example, minimum glides-
lope angles; these ensure that the trajectory to the target 
cannot be too shallow . Equation (5) defines the initial mass of 
the lander and ensures that no more fuel than available is used. 
Equation (6) defines the initial position and velocity of the 
lander, while (7) constrains the lander to be at rest at the target 
at the final time. 

A key challenge in solving Problem I consists of the non-
convex thrust magnitude constraints in (3). These prevent the 
direct use of convex optimization techniques in solving this 
problem. The key theoretical innovation of Ref. 2 is to relax 
these non-convex constraints to give the following problem 
and to show that the optimal solution of this relaxed problem 
is also an optimal solution of Problem 1: 

(Relaxed minimumfuel guidance problem). 	 Problem  

10 
min J  f r(t) at 	 ( ) 

rf ,TCO, R) o  

subject to: 

Y(t) = g +Tc (t)lm(t) m(t) _ -aC(t) 	 (11) 

IT (t)II < r(t) 0 < pi <- r(t)  <- p2 	 (12) 

r(t) E XN t e [0, tf ] 	 (13) 

m(0) = m„, e,, m(tf) ? md,y 	 (14) 

r(0) = ro ,r(0) _ro 	 (15) 

ei r(tf) = 0, [e2 e3 ]T r(tf) = 4, r(tf) = 0 	 (16)  

Note that the non-convex thrust constraints in Equation (3) 
have been replaced with convex set of constraints (Eq. 12). In 
Ref. 2 we showed that this constraint relaxation allows the 
discrete-time form of Problem 2 to be posed as a convex 
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optimization problem. Furthermore, the following lemma 
formally states that an optimal solution to the relaxed mini-
mum-fuel problem is also an optimal solution to the full, 
non-convex minimum-fuel PDG problem. 

Lemma 1. 
Let {tf*,T,(•),F*(t)} be an optimal solution to Problem 2 

such that the corresponding state trajectory r*(t) is on the 
boundary of the state constraints 3X for at most one point on 
tE[O,tf*]. Then, {tf*,T,(•)} is an optimal solution to Problem 
1. 

Proof of Lemma 1 is provided in the documents: Acikmese, 
B. and Ploen, S. R., "Convex Programming Approach to 
Powered Descent Guidance for Mars Landing," AIAA Jour-
nal of Guidance, Control and Dynamics, Vol. 30, No. 5; 2007, 
pp. 1353-1366 and Blackmore, L., andAcikmese, B., "Mini-
mum Landing Error Powered Descent Guidance for Mars 
Landing using Convex Optimization" Under Review. Journal 
of Guidance, Control, and Dynamics, 2009, which are hereby 
incorporated by reference herein. Specifically, "Convex Pro-
gramming Approach to Powered Descent Guidance for Mars 
Landing," provides a proof of Lemma 1 when the optimal 
state trajectory is strictly in the interior of the state con-
straints, while "Minimum Landing Error Powered Descent 
Guidance for Mars Landing using Convex Optimization" 
extends this to cases where there is contact with the boundary 
of the state constraints. 

The approach of Ref. 2 solves the non-convex minimum-
fuel PDG problem by solving a relaxed, convex version of the 
problem, which is a convex optimization problem. The con-
vexification is lossless, in the sense that no part of the feasible 
space of the original problem is removed in the convexifica-
tion process. The resulting optimization problem is a Second-
Order Cone Program, for which solution techniques exist that 
guarantee the globally optimal solution can be found to a 
certain accuracy within a deterministic number of iterations. 
However, if a feasible solution does not exist, the optimiza-
tion will simply report "infeasible," even though it may still 
be possible to land safely at some distance from the original 
target. In the next sections, therefore, we extend the approach 
of Ref. 2 to solve the minimum landing error problem. 
III. Minimum Landing Error Powered Descent Guidance 
Problem Statement 

FIG.1 is a diagram illustrating glideslope constraints for a 
minimum landing error powered descent. The glideslope con-
straint requires the spacecraft to remain in a cone 102 defined 
by a minimum slope angle a. In a minimum landing error 
case, the apex 104 of the cone 102 coincides with the landed 
position 104 of the spacecraft, rather than the original target 
106. 

The minimum landing error powered descent guidance 
problem consists of minimizing the final distance from the 
target subject to non-convex thrust magnitude constraints and 
glideslope constraints, while ensuring that no more fuel mass 
is used than is available. The problem is stated formally in 
Problem 3. below 

8 
-continued 

0 <A < IT,(t)II :~ P2 	 (1 9) 

r(t) E XN t e [0, tf] 	 (20) 

5 	
m(0) = m„,er , m(tf ) ? md,y 	 (21) 

r(0) = ro, r(0) = Po 	 (22) 

r(tf)Tel = 0, r(tf ) = 0 	 (23) 

10 

There are a number of key differences between this and the 
minimum-fuel guidance problem (Problem 1). First, the cost 
in Problem 3 is now the squared Euclidean distance from the 

15 target at the final time. Minimizing the squared distance is 
equivalent to minimizing the distance itself, since 1r(tf)11>_0 
and x2  is monotonic for x?0.1. To simplify notation we have 
assumed that the target is at zero, without loss of generality. 
Second, the final position is no longer required to be at the 

20  goal as in (7). Instead, (23) constrains the final altitude to be 
zero and the final velocity to be zero. Note that the cone 
constraints in (8) are defined around the state at the final time 
step, and not around the origin. This allows glideslope con-
straints to be imposed even in the case that it is not possible to 

25 reach the target, as illustrated in FIG. 1. 
Once again, the key difficulty in solving Problem 3 is that 

the thrust constraints (19) are non-convex. The approach of 
Ref. 2 suggests that we overcome this problem through a 
similar convexification of the thrust constraints. Unfortu- 

30 nately, the result in Lemma 1 does not apply to Problem 3. 
This means that we are not guaranteed that an optimal solu-
tion to a convexified relaxation of the minimum landing error 
problem is an optimal solution to the minimum landing error 
problem. In Section IV we therefore propose a new convexi- 

35 fication for minimum landing error powered descent guid-
ance. 
IV. Minimum Landing Error Powered Descent Guidance 
Technique 

In this section we present a new technique for minimum 
40 landing error powered descent guidance. In Section W-A we 

present the algorithm. In Section IV-B we present a corre-
sponding proof that the algorithm returns the globally optimal 
solution to Problem 3 if a solution exists. 

A. Description 

45 	In this section we describe the main algorithm for the 
solution of the minimum landing error powered descent prob-
lem (Problem 3). The key idea is to perform a prioritized 
optimization such that, first, the distance between the pre-
scribed target and the achievable landing location is mini- 

50 mized by solving Problem 4. Then a minimum fuel trajectory 
achieving this minimum landing error is generated by solving 
a slightly modified version of Problem 5. As we show in 
Section IV-B, this approach ensures that the resulting trajec-
tory satisfies non-convex thrust constraints and returns the 
globally optimal solution to Problem 3 if one exists. The new 

55 algorithm is given in Table 1. 

TABLE 1 

Problem 3 	
Prioritized Powered Descent Guidance Algorithm 

landing 

 error  minimum 	 Prioritized Powered Descent Guidance Algorithm 
landing error guidance problem). 	

60 

1) Solve the relaxed minimum landing error guidance problem (Problem 

min IIr(tf)II2 	 (17) 	4) for {tf*, T,*(-), F*(-)} with corresponding trajectory r*(-). Ifno 
tf•T=O 	 solution exists, return infeasi le 

subject to: 	
2) Solve the relaxed minimum-fuel guidance problem to specified range 

(Problem 5) with D = Ilr(tf  )II for {tf  , T, O, Ft(-)]. 

r(t) = S +T Wlin(t) m(t) _ - 11T'(t)II 	
(18) 65 3) Return {tf, T,t(-)}. 
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(Relaxed minimum landing error guidance problem). Problem 4 

min 	Ilr(tf)IIz  ( 24 ) 
rf,T' (),r() 

subject to: 

Y(t) = g+T,(t)lm(t) in(t) = —aC(t) (25)  

IIT,(t)II < r(t) 0 <pi <- r(t) < p2 (26)  

r(t) E XN t E [0, tf ] (27)  

m(0) = mover, m(tf) ? md,y  (28)  

r(0) = ro, r(0) = ro (29)  

r(tf)Tel = 0, r(tf) = 0  (30)  

10 
B. Analytic Convexification 
In this section we provide two necessary technical lemmas, 

before proving the main convexification result, which is given 
in Theorem 1. 

5 	Lemma 2: 
Assume that an optimal solution to Problem 5 exists, which 

we denote It 5 TCs (•),F's (•)}, which has a corresponding tra-
jectory rs (•) that is on the boundary 3X for at most one point 
on tE[O, tf ]. Then It  5 

T' 
5(.)l  is a feasible solution to prob- 

fo lem 1 with q=[ez  e3] rs (tf ). 
Proof: 
We first claim that {tf ,T's (T) ' F's (T)J is an optimal solu-

tion to problem 2 with q=[e z  e3] Trs (tf ). The proof of this is by 
contradiction . Let us assume that there exists a solution {tf*, 

15 T,*(•),E*(•)} that satisfies the constraints of Problem 2 with 
q=[ez  e3] Trs (tf ), but that also has: 

J
rf

t (t)dt< J tf  F' (t) 
(Relaxed minimum fuel 	 Problem  5 20 	0 	 0 

	 (39) 

guidance problem to specified range). 

To generate Problem 4 we relaxed the non-convex thrust 
constraints of the original minimum landing -error problem 40 
stated in Problem 3 . This relaxation is performed in the same 
manner that the minimum-fuel PDG problem is relaxed from 
Problem 1 to Problem 2. Since the relaxed minimum landing-
error problem (Problem 4) has convex inequality constraints 
on the state as well as on the controls, it can be solved with 45 
existing solvers. However, unlike minimum-fuel PDG, in 
which an optimal solution to the relaxed Problem 2 is also an 
optimal , feasible solution to Problem 1 , an optimal solution to 
the relaxed minimum landing-error problem (Problem 4) is 
not necessarily an optimal, feasible solution to the original 50 
minimum landing -error problem , Problem 3 . In particular, 
another step is needed to ensure that the non-convex thrust 
constraints are satisfied. This step consists of solving Problem 
5, which also has relaxed constraints . However, since Prob-
lem 5 minimizes fuel use, we can use the result of Lemma 1 55 
to prove that the solution to Problem 5 will satisfy the non-
convex thrust constraints of Problem 3 . We will show in 
Section IV-B that the solution to Problem 5 is the optimal 
solution to Problem 3 , and that it uses the minimum possible 
fuel of all optimal solutions to Problem 3. 60 

In order to solve Problems 4 and 5 in practice, three addi-
tional steps are required; first a change of variables to remove 
the nonlinear (and hence non-convex) dynamic constraints; 
second , a discretization in time; and third , a line search for the 
optimal time of flight . For these steps we use an identical 65 
approachto Ref. 2, whichwe review in Sections IV-C through 
IV-E. 

Comparing constraints, we see that {tf*,T~*(•),E*(•)} is a 
feasible solution to Problem 5. Hence {tf*,T,*(•),E*(•)} is 
also a feasible solution with lower cost than the optimal 
solution {tf ,T 5 (•),F5 (•)I, which leads to a contradiction. 
Hence {tf ,T~5 (•),F5 (•)l is an optimal solution to Problem 2 
with q=[ez  e3] Trs  (tf ). Since r s (t) is on the boundary 3X for at 
most one point on tE[O,tf ], then by Lemma 1, {tf ,T s (•), 5)  
(•)I is a feasible solution to Problem 1 with q=[e z  e3] Trs (tf ). 

Lemma 3: 
Assume that an optimal solution to Problem 4 exists, which 

we denote {tf ,T~4(•),F4(•)I, which has a corresponding tra-
jectory r4(•). Then there exists a feasible, optimal solution to 
Problem 5 with D=JJr4(tf)JJ, which we denote {tf ,T 5(.) ,F5 

(•)I with corresponding trajectory r s (•). Assume further that 
this trajectory is on the boundary 3X for at most one point on 
tE[O,tf ]. Then It 5 Tcs (•)} is a feasible, optimal solution to 
Problem 3. Furthermore {tf ,T ~s (•)} uses the minimum pos-
sible fuel of all optimal solutions to Problem 3. 

Proof: 
First, note that {tf * T 4 *(•),E4(•)} is a feasible solution to 

Problem 5 with D=JJr4(tf)11 since the only additional con-
straint in Problem 5 is Jr(tf )JJ -_D, and by design, we have 
D=11r4(tf )11. Hence, a feasible solution to problem 5 exists for 
D=11r4(tf)11. Solving this problem, we obtain {tf,Tes(.) Ls 

(•)}, and from Lemma 2, we know that {tf ,T 5 (•)} is a fea-
sible solution to Problem 1 for q=[e z  e3] T?(tf ). By compar-
ing constraints , we see that any feasible solution to Problem 1 
is a feasible solution to Problem 3. Hence, {tf,T ~5 (•)l is a 
feasible solution to Problem 3. This means that: 

s (tf)II ~ II(tf)Ih 

Where r3 (•) denotes the trajectory corresponding to the 
optimal solution to Problem 3 . Now since Problem 4 is a 
relaxation of Problem 3, we know that 114(tf) ~~<_~~r3(tf)11. 
Since in Problem 5 we have assigned D= JJr4(tf)JJ, we also 
know that I Irs(tf )1I  <_I r4(tf)JJ and hence: 

rs (tf)Il , llr'(t 3  

Combining (40) and (41) we have ~ Jrs (tf )JJ ~flJr3 (tf ) ~ 1. Hence 
the landing error in the optimal solution to Problem 5 is the 
same as that m a globally optimal solution to Problem 3. We 
have already shown that {tf,T, s (•)} is a feasible solution to 
Problem 3. Hence {tf ,T ~5 (•)l is an optimal solution to Prob-
lem 3. 

We now show that {tf ,T ~5 (•)l uses the minimum possible 
fuel of all optimal solutions to Problem 3. We know that 

fC'(t) d t (
31 

 ) min 	J  
rf,ToO, FO 	o 

subject to: 25 

Y(t) = g+T,(t)lm(t) in(t) = —aC(t) (32)  

IIT,(t)II < C(t) 0  <pi < F(t) :~ P2 (33)  

r(t)T  e l  2 0 `d t E [0, tf ] (34) 30 

r(t) E XN t E [0, tf ] (35)  

M(0) = m„,er, m(tf) > md ,y (36)  

r(0) = ro, r( 0) = ro (37) 35 

r(tf)T  el = 0, lr(tf)II < D, r(tf) = 0 (38)  
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{tf5,T~5 (•)l is an optimal solution to Problem 3. Hence all 
optimal solutions to Problem 3 have ~ Jr(tf)JJ- JJrs (tf )JJ : ~ 4(tf4)~~. 
The proof is by contradiction. Assume that there exists an 
optimal solution {tffi,T,t(•)1 to Problem  with corresponding 
trajectory rt(•) that also has: 

t 	 5 

~f IIT, (t)Ilat< 
f 
 IIT, (t)Ilat. 

0 0 

Comparing constraints, since lrt (tft)11:~~ Jlr4(tf) 11 we know that 
{tf,T~t(•),Et(•)} with Fl(*)-IIT,t(•)Il is also a feasible solu-
tion to Problem 5 with D-1Ir4(tf  11. From (42) this solution has 
a lower cost than {tf5 j 5(•)l. This leads to a contradiction 
since {tfs,T 5 (•),E55 (•)1 is the optimal solution to Problem 5 
with D-J Jr4(tf4J J. Hence there is no optimal solution to Problem 
3 that uses less fuel than {tf  ,T~5(•)1. 

The following theorem is the main result of this paper and 
it follows from Lemmas 1 through 3. 

Theorem 1. If a solution to the non-convex minimum land-
ing error guidance problem (Problem 3) exists, then the pri-
oritized powered descent guidance algorithm returns a solu-
tion Itf , Tit (•)1 with trajectory rt(•). If this trajectory is on the 
boundary of the state constraints OX for at most one point on 
the interval [O,tf ], then it is an optimal solution to Problem 3. 
Furthermore the returned solution uses the minimal fuel 
among all optimal solutions of Problem 3. 

Proof: Since Problem 4 is a relaxation of Problem 3, we 
know that if there is a feasible solution to Problem 3, there 
exists a feasible solution to Problem 4, and the prioritized 
powered descent guidance will not return infeasible. Then 
from Lemma 3 we know that Itf ,T,t(•)1 is an optimal solu-
tion to Problem 3, and that this solution uses the least fuel of 
all optimal solutions to Problem 3. 

Note that Theorem 1 implies that the prioritized powered 
descent guidance algorithm returns infeasible only if no solu-
tion to the non-convex minimum landing error guidance 
problem (Problem 3) exists. Hence the convexification 
approach is lossless, in the sense that no part of the feasible 
region of the original problem is removed by convexifying the 
non-convex constraints. 

Remark 1. As with the minimum fuel powered descent 
guidance problem we have observed that, for Mars landing, 
all the optimal trajectories that are generated via solving the 
relaxed minimum-fuel guidance problem to specified range 
touch the boundary of the feasible state region at most one 
time instant. 

Hence the prioritized powered descent guidance algorithm 
has always returned optimal solutions to the original non-
convex minimum landing error problem for Mars powered 
descent guidance. This includes an extensive empirical inves-
tigation across the space of feasible initial conditions and 
system parameters. 

Remark 2. Observe that in Step 1 of the prioritized powered 
descent guidance algorithm, we do not necessarily obtain a 
fuel-optimal solution, but that Step 2 ensures a fuel-optimal 
solution is found. In this way the two-step approach is a way 
of prioritizing a multi-objective optimization problem. This 
approach is different from the more typical regularization 
procedure where both distance and fuel costs are combined in 
a single cost function to ensure that a single optimal solution 
exists. The prioritization approach removes two of the key 
problems associated with regularization. First, regularization 
requires that the relative weights on fuel and distance are 
chosen, which is usually carried out in an ad-hoc manner. 
Second, regularized solutions do not necessarily make physi- 

12 
cal sense. Our approach removes this ambiguity from the 
problem description and obtains a physically meaningful 
solution. 

C. Change of Variables 
5 	In this section we review the change of variables employed 

by Ref. 2 to remove the non-convex constraints introduced by 
the nonlinear state dynamics (25). The change of variables 
leads to Problem 6, presented later in this section, that is a 
continuous-time optimal control problem with a convex cost 

10 
and convex constraints. The change of variables is given by: 

o  C 	 (43) 

M 

o  T, 
15 	u= - 

m 

0 
z=1n m. 

Equation (25) can then be rewritten as: 

20 

r(t) = u(t) + g, 	 (44) 

m(t) 	 (45) 

25 

The change of variables therefore yields a set of linear 
equations for the state dynamics. The control constraints, 
however are no longer convex. These are now given by: 

30 	 u(0l <a(t) VtE[0,tf] 	 (46) 

Pie 
=O<

UWt P2e -()VEL0,t3. 	 (47) 

The approach of Ref. 2 uses a second order cone approxi-
mation of the inequalities in (47) that can be readily incorpo- 

35 rated into the SOCP solution framework. The left-hand 
inequality of (47) can be approximated by a second order 
cone by using the first three terms of the Taylor series expan-
sion of e-',  giving: 

40 

(z - zo)2  
Pie —0 	 (Z 

 2 ]«' 

where zo  is a given constant. For the right-hand inequality in 
45 

(47), a linear approximation of e -'  is used corresponding to 
the first two terms of the Taylor series expansion of e — , 
thereby obtaining: 

6`P2eX0 [1- (z-zo)] 

50 	A linear approximation must be used, since requiring a 
variable to be less than a quadratic is non-convex. Letting: 

ui o 
P  C 

zo, u2 ' P2e Z0 
	

(48) 

55 

we obtain the following second order cone and linear approxi-
mations of (47): 

60 

uiW 1- (z(t) -zo(t)) + 
 (z(t) - zo(t))2 	 (49) 

2 

-(t) < u2(t)11- (z(t) - zo(t))] 

65 	
N t e [0, tf], 
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where: 
u(t) 	M 

zo(t)=In(mwer aPzt), 	 (50) 	
~(t) 

_ 
 , 

 Pi'hi(t) 

and m_et  is the initial mass of the spacecraft. An approxima- 
j=0 

tion of Problem 4 can now be expressed in terms of the new 5 	t e [0, tf I, 

control variables: 

14 

(60) 

(Relaxed minimum landing error 

problem with changed variables). 

Then the solution of the differential equations (44) and (45) at 
Problem 6 	the temporal nodes and the control inputs at the temporal 

10 nodes can be expressed in terms of these coefficients: 

r(tk) 	
ro 	 g 

.Yk =  r(tk) = ~k 	PO 	
+!logo ]

+gk77 

z(tk ) 	In m er  

k=1,... ,N 

0-k — -(tk) 
—Tk tl 

20 
k=1,... 

where (D, T, A k  andY, are matrix functions of the time index 
k determined by the basis functions chosen. In this paper, we 

25 use piecewise linear basis functions with M =N, such that: 

r
n r0 11r(tf)II 

z 
f, 

subject to: 

Y(t) = g + u(t) Z(t) = — ao-(t) 

r 	

IIu(t)II < F(t) 

Pi (t) 1— (z(t) — zo (t)) + 
 (z(t) — zo (t)) z  1 

L 	 2 J 
0_(t) P2(t)[1- (z(t) - zo(t))] 

r(t) E XV t E [0, tf] 

-(0) = --t, rn(tf ) > md,y 

r(0) = ro ,r(0) =ro  

r(tf )T e l  = 0, r(tf ) = 0. 

(51)  

(52) 15 

(53)  

(54)  

(55)  

(56)  

(57)  

(5 8) 

(61)  

(62)  

Problem 6 is an approximation of the relaxed minimum 30 
landing error PDG problem (Problem 4) in which the nonlin-
ear equality constraints have been eliminated . Furthermore, 
Ref. 2 shows that the approximation of the inequalities in (47) 
given by (49) is generally very accurate for both parts of the 
inequality, and derives an analytic upper bound on the 35 
approximation error. Problem 6 is a continuous -time optimal 
control problem with convex constraints and a convex cost 
function . To solve this using a direct optimization approach, a 
discretization in time is required , which we describe in Sec- 
tion IV-D. 	 40 

D. Time Discretization 
In this section, we apply the discretization of Ref. 2 to 

Problem 6, and develop a numerical algorithm to solve the 
resulting discrete version of the problem. The discretization 
of Problem 6 converts the infinite-dimensional optimization 45 
problem to a finite -dimensional one by discretizing the time 
domain into equal time intervals and imposing the constraints 
at edges of the timesteps, which we refer to as temporal nodes. 
Since the constraints are linear or second order cone con-
straints , the resulting problem is a finite -dimensional SOCP 50 
problem that can be efficiently solved by readily available 
algorithms. 

For any given time interval [0,tJ, and time increment, At, 
the temporal nodes are given as: 

ti t 	 (63) 

0t 
when t E [ti_,, ti) 

@j(t) = tti  when t E [tj , tj+t) AT  
0 	otherwise, 

and: 

Pi 
U(ti) 0-(t ) 	

(64) 
— 

J=0,... ,M. 

This corresponds to first-order hold discretization of a lin-
ear time invariant system for the dynamics of the spacecraft 
(44) and (45), with the vector [r(t,J T,r(t,) z(t, ) T] T  as the state. 
Explicit expressions for (D, T, A k  and Yk  can be obtained 
using standard techniques ; we do not repeat this derivation 
here. As noted by Ref. 2 , more sophisticated basis functions 
such as Chebyshev polynomials can be used, which may 
allow the controls to be described with significantly fewer 
coefficients, i.e. M«N. Now, with the following additional 
notation, Problem 7 describes the discretized version of Prob-
lem 6: 

	

55 	E_ ~ 	03 ,41F-101,6  	0 , LI Ev 0 , 3  [3x3   	1 ]  E, -1,3 ,3  3 	 [ 3 
tk k4t k=0, ... , N, where N4t=tf. 	

` Define a vector of 	
13,3 0 3, 11-    	 (65) 

parameters as: 

Po 	 (59) 60 	
(Discretized Relaxed Minimum 	 Problem 7 

Landing Error Guidance Problem). 
P= 

PM 	 mi IIEyNII2 	 (66) 

subject to: 

	

where p~ER 4 .We describe the control input, u, and ainterms 65 	 T 
of these parameters and some prescribed basis functions , 	 EuykP e~Yk P k = o, ... , N 	 (67) 

C('), ... , fin('): 



US 8,489,260 B2 
15 

-continued 

ui (t) ~1  -  (F'Yk -  zo(tk)) + 
(EYk -  zo(tk))2  1 	(68) 

2 

eT  yk71 < u2 (t) [1— (F'Yk — zo (tk ))] 

Eyk  e Xk = 1, ... , N 	 (69) 

EyN  ? lnmd, 	 (70) 

YNel = 0, EvYN = 0 	 (71)  

ro 	
l 	

(72) 

Yk = (Dk 	ro 	+Ak ~ g I +`Yk gk=1,... ,N. 

lum"t  

Note that, for any given N, Problem 7 defines a finite-
dimensional second-order-cone program (SOCP), which can 
be solved very efficiently with guaranteed convergence to the 
globally optimal solution by using existing SOCP algorithms. 

Here N describes the time of flight since tf NAt. To find the 
optimal time of flight, Ref. 2 propose performing a line search 
for the optimal N, solving at each iteration an SOCP for the 
remaining optimization parameters q. We perform an identi-
cal search to solve Problem 7, as described in Section IV-E. 

E. Time of Flight Search 
For minimum-fuel powered descent guidance , Ref. 2 uses 

a line search to find the optimal time of flight tf*. In this 
section we apply this approach to the minimum landing error 
guidance problem. Extending Ref. 2, Ref. 19 uses a Golden 
Search technique , which ensures that the interval in which the 
optimal value is known to lie shrinks by the same constant 
proportion at each iteration. Golden Search has been shown to 
be robust and efficient , and it gives an explicit interval in 
which the optimum is known to lie. This last property means 
that the search can be terminated when sufficient accuracy has 
been achieved. The technique relies, however, on two key 
properties of J(tf), the optimal cost of Problem 3 as a function 
of tf  

J(tf ) = min Jr(tf )11 2  subject to (18) through (23). 	(73) 
T10, R ) 

First, we must know an interval in which tf* is known to lie. 
That is, we must find bounds t, and t o  such that ti~tf btu . 
Second, J(tf) must be unimodal. 

In Ref. 19, the authors solve the one-dimensional powered 
descent guidance problem using the approach of Ref. 5 to 
obtain values for t, and t u. In the case of minimum landing 
error guidance , we can use the same approach to obtain t i . 

The approach of Ref. 5 gives the minimum -time solution in 
the vertical dimension only; that is, it determines the mini-
mum-time thrust profile that eliminates the initial vertical 
velocity and ends with the lander at zero altitude. Denote the 
optimal time of this solution as tf1D . In the minimum landing 
error guidance problem the lander must also have zero final 
altitude and vertical velocity , hence the constraint set for the 
minimum landing error guidance problem is tighter than for 
the one-dimensional problem. This means that any feasible 
time-of-flight for Problem 3 is no less than tf1D, and hence we 
can set t, ~f D~ f . 

The approach of Ref. 19 for obtaining t o  does not, however, 
extend to the minimum landing error case. Instead , we use a 
heuristic scaling to set to  ks atett, where k,,,,,  is on the order 
of 3. Then, assuming unimodality of J(tf), the golden search 

16 
approach checks analytically whether t o  is a true upper bound. 
If not, to  is increased until it is an upper bound on tf . 

In Ref. 19, the authors observed experimentally that J(t f) is 
indeed a unimodal function. Since the present paper is con- 

5 cerned with the minimum landing error problem , this conclu-
sion does not carry over from the minimum-fuel case. In 
Section V-B we show experimentally that J(tf) is unimodal, 
and that the Golden Search approach finds tf  towithin a few 
percent. 

to V. Simulation Results 
In thi s section we present simulation results obtained using 

the new algorithm. The Second Order Cone Programs were 
solved using G-OPT, a JPL in-house convex optimizer. Simu-
lations were run on a Macbook Pro 2.4 GHz with 4 GB RAM. 

15 In Section V-A we present some example solutions generated 
by the new approach , while in Section V-B we demonstrate 
empirically the unimodality of the optimal solution with 
respect to the time of flight. 

A. Example Solutions 
20 	We first consider a case where the target \emph{can} be 

reached given the available fuel, then a case when the target 
\emph{cannot} be reached. The spacecraft parameters for 
these simulations are: 

25 	g—[-3.7114 0 0] T  md, 1.505 kg m_ —  1905 kg 
1,,-225 s p l -4972N pz 13260N 	 (74) 

A glideslope constraint is used to prevent the trajectory 
from entering at a more shallow angle than 4 °. The spacecraft 
initial position is given by: 

30 

1500 m 
	

(75) 

ro — 2000 m 
35 

In Case 1, the initial velocity is denoted ro(t)  and is given 
by: 

40 

—75 tn/s 	 (76) 

to  — 	0 

0 	100 m/s 

45 

In Ref. 2 it is shown that there is a feasible solution to the 
target in this case, but that the solution requires almost all of 
the available fuel mass. This example illustrates the value of 
the convex optimization , which guarantees finding a solution 

50 if one exists; even cases at the edge of the physical feasibility 
can be solved . In FIG. 2 and FIGS . 3A-3D , we show results 
generated for Case 1 using the new prioritized minimum 
landing error PDG approach (Table 1) with 55 time discreti-
zation points. FIG. 2 is a three dimensional plot of an optimal 

55 trajectory 200 generated using a minimum landing error tar-
geting approach for Case 1, with r f [1500 0 2000,] T  to-[75   
0 100] T  (units in meters and meters /second, respectively). In 
this case, a feasible solution exists, so the prioritized mini-
mum landing error algorithm returns the minimum fuel solu- 

60 tion to the target. FIGS. 3A and 3B show the optimal trajec-
tory 200 in horizontal and vertical plane transfers, while 
FIGS. 3C and 3D show the angle above the surface 302 and 
optimal throttle 304, respectively. FIGS . 3E-3G illustrate the 
position , velocity, control acceleration for the optimal trajec- 

65 tort' 200 in X, Y and Z coordinates, while FIG. 3G illustrates 
the thrust angle and rate . Golden Search was terminated when 
the optimal time of flight was known to within an interval of 
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3.0 s. Since there exists in this case a feasible solution to the 
target, the algorithm returns the minimum-fuel solution to the 
target. This solution requires 399.5 kg of fuel, has tf*-78.3 s 
and is identical to the solution reported by Ref. 2. The total 
computation time required was 14.3 s, and 23 iterations of 
Golden Search were used. 

In Case 2, there is an additional initial velocity in the y 
direction: 

10 

—75 m/s 
	

(77) 

r0  = 40 m/s 

100 m/s 

15 

Since Case I used almost all of the available fuel, and Case 
2 has an initial velocity in the y direction away from the target, 
it is most likely that there will be insufficient fuel to reach the 
target. We verify this by attempting to solve the minimum- 20  
fuel PDG problem using the algorithm of Ref. 2, which 
reports that the problem is infeasible, and that at least 410 kg 
of fuel is required to reach the target. The minimum landing 
error targeting algorithm, however, finds a solution that 
ensures safe landing at a distance of 268 m from the target. 

25 
The solution, shown in FIG. 4 and FIGS. 5A-5H have has 
tf*-77.6 s and uses the full 400 kg of available fuel. The total 
computation time required was 16.24 s, and 23 iterations of 
Golden Search were used. FIGS. 5A and 5B show the result-
ing optimal trajectory 400, while FIG. 5C and FIG. 5D show 

30 
the angle above the surface 502 and the optimal throttle 504, 
respectively. FIGS. 5E-5G show the values of position, veloc-
ity, and control acceleration for the trajectory as a function of 
time, respectively, while FIG. 5H shows the thrust angle and 
rate. 35  

B. Unimodality of Cost as a Function of Time of Flight 
In this section we demonstrate empirically that the optimal 

cost of the minimum landing error solution is unimodal in the 
time of flight. Throughout this section we use the spacecraft 
parameters given in (74). FIG. 6 shows a plot 600 7(tf) for a 

40 
typical set of initial conditions, illustrating the dependence of 
minimum distance from the target on time of flight for a 
typical set of initial conditions. The graph was generated by 
specifying tf  inincrements of I s and solving Problem 7 for 
each value of tf, In this case 7(tf) is clearly unimodal, as 45  
required. By reducing the time increments to 0.01 s close to 
the minimum, the optimum was found to be at tf 56.35 s. The 
Golden Search determines the optimum to be 55.83 s, which 
is an error of only 0.9%. Again Golden Search was terminated 
when the optimal time of flight was known to within an 

50 
interval of 3.0 s. The efficacy of the Golden Search approach 
was investigated for a range of initial conditions by calculat-
ing the error between tf* determined through Golden Search, 
and the true optimum. The true optimum was determined 
approximately by calculating 7(tf) for tfE[30,150] in incre- 

55 
ments of I s. Initial conditions were selected at random using 
a uniform distribution across a box of values specified by:  

18 
hundred random initial conditions were chosen, and for these 
the average percentage error in tf* was 0.012% with a stan-
dard deviation of 0.057%. The maximum error across all 
instances was 1.8%. This demonstrates that the Golden 
Search approach is effective for a broad range of initial con-
ditions in the case of minimum landing error powered decent 
guidance. 
VI. Implementation 

A. Technique 
FIG. 7 is a diagram presenting illustrative process steps that 

can be used to land the spacecraft. A minimum landing error 
descent solution is computed, as shown in block 702. As 
described in Section IV above, the solution can be computed 
for a spacecraft that is subject to non-convex thruster con-
straints, such as a minimum thrust and a maximum thrust. 
This solution is computed, by convexifying the non-convex 
thrust constraint, and determining a solution to the system 
subject to the convexified non-convex thrust constraint, as 
described in Problem 4. 

If no computed solution exists, then landing cannot be 
performed safely under the specified conditions, and an 
"infeasible" result is returned. If a computed solution exists, 
it may be one in which the landing error range (difference 
between the desired landing point and the computed landing 
point, or D— JJr(tf*)JJ) is zero, or it may be one in which the 
landing error range D is non-zero (e.g. the minimum landing 
error solution result in a landing error). 

Next, a thrust profile for the spacecraft is determined from 
the result obtained above, as shown in block 704. In a simple 
embodiment, this can be accomplished, for example, by sim-
ply setting the thrust profile to T,*(•) as obtained by solving 
Problem 4. This thrust profile may be used to command the 
spacecraft thrusters during powered descent, as shown in 
block 706. 

However, as described above, the optimal, feasible solution 
to the convexified minimum landing error problem (Problem 
4) is not necessarily an optimal, feasible solution to the origi-
nal (non-convex) minimum landing error problem. Also, 
while the solution to Problem 4 computed above may provide 
a solution to land the spacecraft on the surface with minimum 
error when feasible, this is not necessarily a fuel-optimal 
solution. That is, the solution is not necessarily that solution 
that minimizes landing thruster fuel use in landing the space-
craft at the landing point. Therefore, setting the thrust profile 
to T,*(•) for a this point will not guarantee a solution that (1) 
minimizes landing error, (2) minimizes landing thruster fuel 
use, and (3) ensures that all of the non-convex thruster con-
straints are satisfied. 

A solution that meets all three objectives can be obtained, 
however, by taking the further step of convexifying the non-
convex thruster constraints and solving the convexified mini-
mum fuel guidance problem subject to constraints that 
include the landing error range D computed in block 702 
above (e.g. solving Problem 5). The resulting solution mini-
mizes landing error and landing thruster fuel use and ensures 
that all of the non-convex thruster constraints are satisfied. 

FIG. 8 is a diagram illustrating how the process of block 
704 (determining the thrust profile for the spacecraft subject 
to the non-convex constraint from the solution computed in 
block 702) can be performed in such a way so as to minimize 
landing error and fuel use, and so as to ensure that all non-
convex thruster constraints are satisfied. As shown in block 
802, a minimum fuel descent solution for the spacecraft is 
computed subject to the convexified non-convex constraint 
and the landing error D computed in block 702. The resulting 
thrust profile T,'(•) for the spacecraft subject to the non-
convex thrust constraint is then computed from the minimum 

12 km I —30 m/s 	 —10 m/s 	 60 

—5 km < ro  < 5 km —100 m/s <—r o  <— 100 m/s 

m —5 k 	 5 km —100 m/s 	 100 m/s 

Since we are only concerned with the unimodality of 7(tf) in 65 

the minimum landing error case, solutions for which a fea-
sible trajectory to the target existed were discarded. One 
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20 
fuel descent solution for the convexified non-convex thrust 	encoder unit 1058 and in turn to the ground station 1060. The 
constraint, as shown in block 804. This resulting thrust profile 	spacecraft control processor 1002 also sends signals to solar 
T,'(•) is not only a minimum error solution and a minimum 	wing drives 1046 and 1048. 
fuel solution to land the spacecraft with that minimum error, 	The spacecraft control processor also sends command sig- 
it is also a solution that satisfies all non-convex thruster con-  5 nals 1054 to the telemetry encoder unit 1058 which in turn 
straints are satisfied. 	 sends feedback signals 1056 to the SCP 1002. This feedback 

B. Spacecraft and Control System 
	

loop, as with the other feedback loops to the SCP 1002 
FIG. 9 illustrates a three-axis stabilized spacecraft 900. 	described earlier, assist in the overall control of the space- 

The spacecraft 900 has a main body 902, a high gain narrow 	craft. The SCP 1002 communicates with the telemetry 
beam antennas 906, and a telemetry and command antenna io encoder unit 1058, which receives the signals from various 
908 which is aimed at a control ground station. The spacecraft 

	
spacecraft components and subsystems and then relays them 

900 may also include one or more sensors 912 to measure the 	to the ground station 1060. 
attitude of the spacecraft 900. These sensors may include sun 

	
The wheel drive electronics 1038, 1040 receive signals 

sensors, earth sensors, and star sensors. 	 from the SCP 1002 and control the rotational speed of the 
The spacecraft 900 has a power supply that may include an 15 momentum wheels. The jackscrew drive signals 1066 adjust 

internal nuclear power supply and/or solar panels 904 that are 	the orientation of the angular momentum vector of the 
used to collect solar energy. The solar panels 904 may be 	momentum wheels. This accommodates varying degrees of 
stowed or jettisoned prior to landing. 	 attitude steering agility and accommodates movement of the 

Since the solar panels are often referred to by the designa- 	spacecraft as required. 
tions "North" and "South", the solar panels in FIG. 9 are 20 	The use of reaction wheels or equivalent internal torquers 
referred to by the numerals 904N and 904S for the "North" 

	
to control a momentum bias stabilized spacecraft allows 

and "South" solar panels, respectively. The spacecraft may 
	

inversion about yaw of the attitude at will without change to 
have a plurality of attitude control thrusters as well as landing 	the attitude control. In this sense, the canting of the momen- 
thrusters 912, which are used when the spacecraft 900 is 	tum wheel is entirely equivalent to the use of reaction wheels. 
landing on a surface. 	 25 The SCP 1002 may include or have access to memory 

The three axes of the spacecraft 900 are shown in FIG. 9. 	1070, such as a random access memory (RAM). Generally, 
The pitch axis Y lies along the plane of the solar panels 904N 

	
the SCP 1002 operates under control of an operating system 

and 904S. The roll axis X and yaw axis Z are perpendicular to 
	

1072 stored in the memory 1070, and interfaces withthe other 
the pitch axis P and lie in the directions and planes shown. 	system components to accept inputs and generate outputs, 

FIG. 10 is a diagram depicting the functional architecture 30 including commands. Applications running in the SCP 1002 
of a representative spacecraft guidance and control system. 	access and manipulate data stored in the memory 1070. The 
Control of the spacecraft is provided by a computer or space- 	spacecraft 900 may also comprise an external communication 
craft control processor (SCP) 1002. The SCP performs a 

	
device such as a spacecraft link for communicating with other 

number of functions which may include post ejection 	computers at, for example, a ground station. If necessary, 
sequencing, transfer orbit processing, acquisition control, 35 operation instructions for new applications can be uploaded 
stationkeeping control, normal mode control, mechanisms 

	
from ground stations. 

control, fault protection, and spacecraft systems support, 	In one embodiment, instructions implementing the operat- 
landing control, and others. 	 ing system 1072, application programs, and other modules 

Input to the spacecraft control processor 1002 may come 	are tangibly embodied in a computer-readable medium, e.g., 
from a any combination of a number of spacecraft compo-  4o data storage device, which could include a RAM, EEPROM, 
nents and subsystems, such as a transfer orbit sun sensor 	or other memory device. Further, the operating system 1072 
1004, an acquisition sun sensor 1006, an inertial reference 	and the computer program are comprised of instructions 
unit 1008, a transfer orbit sensor 1010, an operational orbit 	which, when read and executed by the SCP 1002, causes the 
sensor 1012, a normal mode wide angle sun sensor 1014, a 	spacecraft processor 1002 to perform the steps necessary to 
magnetometer 1016, and one or more star sensors 1018. 	45 implement and/or use the present invention. Computer pro- 

The SCP 1002 generates control signal commands 1020 
	

gram and/or operating instructions may also be tangibly 
which are directed to a command decoder unit 1022. The 	embodied in memory 1070 and/or data communications 
command decoder unit operates the load shedding andbattery 

	
devices (e.g. other devices in the spacecraft 900 or on the 

charging systems 1024. The command decoder unit also 	ground), thereby making a computer program product or 
sends signals to the magnetic torque control unit (MTCU) 5o article of manufacture according to the invention. As such, the 
1026 and the torque coil 1028. 	 terms "program storage device," "article of manufacture" and 

The SCP 1002 also sends control commands 1030 to the 
	

"computer program product" as used herein are intended to 
thruster valve driver unit 1032 which in turn controls the 	encompass a computer program accessible from any com- 
landing thrusters 912 and the attitude control thrusters 1036. 	puter readable device or media. 

Wheel torque commands 1062 are generated by the SCP 55 C. Ground Station Processing 
1002 and are communicated to the wheel speed electronics 

	
FIG. 11 is a diagram illustrating an exemplary computer 

1038 and 1040. These effect changes in the wheel speeds for 	system 1100 that could be used to implement elements of the 
wheels in momentum wheel assemblies 1042 and 1044, 	present invention at the ground station. The computer 1102 
respectively. The speed of the wheels is also measured and fed 

	
comprises a general purpose hardware processor 1104A and/ 

back to the SCP 1002 by feedback control signal 1064. 	60 or a special purpose hardware processor 1104B (hereinafter 
The spacecraft control processor 1002 also sends jack- 	alternatively collectively referred to as processor 1104) and a 

screw drive signals 1066 to the momentum wheel assemblies 	memory 1106, such as random access memory (RAM). The 
1042 and 1044. These signals control the operation of the 	computer 1102 may be coupled to other devices, including 
jackscrews individually and thus the amount of tilt of the 

	
input/output (I/O) devices such as a keyboard 1114, a mouse 

momentum wheels. The position of the jackscrews is then fed 65 device 1116 and a printer 1128. 
back through command signal 1068 to the spacecraft control 

	
In one embodiment, the computer 1102 operates by the 

processor. The signals 1068 are also sent to the telemetry 	general purpose processor 1104A performing instructions 
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22 
defined by the computer program 1110 under control of an 	the present invention or to load the program of instructions 
operating system 1108. The computer program 1110 and/or 

	
into a memory, thus creating a special purpose data structure 

the operating system 1108 may be stored in the memory 1106 	causing the computer to operate as a specially programmed 
and may interface with the user and/or other devices to accept 	computer executing the method steps described herein. Com- 
input and commands and, based on such input and commands 5 puter program 1110 and/or operating instructions may also be 
and the instructions defined by the computer program 1110 

	
tangibly embodied in memory 1106 and/or data communica- 

and operating system 1108 to provide output and results. 	tions devices 1130, thereby making a computer program 
Output/results may be presented on the display 1122 or 	product or article of manufacture according to the invention. 

provided to another device for presentation or further pro- 	As such, the terms "article of manufacture," "program storage 
cessing or action. In one embodiment, the display 1122 com-  10 device" and "computer program product" or "computer read- 
prises a liquid crystal display (LCD) having a plurality of 	able storage device" as used herein are intended to encompass 
separately addressable pixels formed by liquid crystals. Each 	a computer program accessible from any computer readable 
pixel of the display 1122 changes to an opaque or translucent 

	
device or media. 

state to form a part of the image on the display in response to 	Of course, those skilled in the art will recognize that any 
the data or information generated by the processor 1104 from 15 combination of the above components, or any number of 
the application of the instructions of the computer program 	different components, peripherals, and other devices, may be 
1110 and/or operating system 1108 to the input and com- 	used with the computer 1102. 
mands. Other display 1122 types also include picture ele- 
ments that change state in order to create the image presented 
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What is claimed is: 
1. A method of computing a thrust profile to land a space-

craft at or near a surface target, wherein the spacecraft is 30 
subject to a non-convex thrust constraint, comprising the 
steps of: 

computing a minimum landing error descent solution for 
the spacecraft subject to a convexified non-convex con-
straint, wherein the descent solution includes a landing 35  
error range; and 

determining the thrust profile for the spacecraft subject to 
the non-convex constraint from the computed minimum 
landing error descent solution for the spacecraft subject 
to the convexified non-convex constraint. 

2. The method of claim 1, wherein the step of determining 40 
the thrust profile for the spacecraft subject to the non-convex 
constraint from the computed minimum landing error descent 
solution subject to the convexified non-convex thrust con-
straint comprises the steps of: 

computing a minimum fuel descent solution for the space- 45 
craft subject to the convexified non-convex constraint 
and the landing error range; and 

determining the thrust profile for the spacecraft subject to 
the non-convex constraint from the computed minimum 
fuel descent solution for the spacecraft subject to the 50 
convexified non-convex constraint. 

3. The method of claim 2, wherein the step of computing a 
minimum landing error descent solution for the spacecraft 
subject to the convexified non-convex thrust constraint com-
prises the steps of computing 

55 

min II t r 	2  
rf,T(.),rO 	(f)II  

24 
m(0)=mWeb  m(tf)~md, 

r(0)—r,, r(0) —r, 

r(tf) Tei 0, r(tf)=0 

wherein 
r(t) is a position vector of the spacecraft as a function of 

flight time; 
f(t) is a velocity vector of the spacecraft as a function of 

flight time; 
f(t) is an acceleration vector of the spacecraft as a function 

of flight time; 
t is the time from beginning of powered landing; 
t(0) is the time at the beginning of powered landing 
t(f)°tfis the time at the ending of powered landing; 
Te(t) is a net thrust force vector acting on the spacecraft as 

a function of flight time; 
m(t) is a mass of the spacecraft as a function of flight time; 
m(t) is a mass change of the spacecraft as a function of 

flight time; 
X is the set of feasible positions of the spacecraft; 
m(0) is the spacecraft mass at the beginning of the thrust 

profile; 
m(tf) is the spacecraft mass at the end of the thrust profile; 

and J' 
is the initial mass of the spacecraft without fuel; 

mwet is the initial mass of the spacecraft with fuel; 

a - 
- [vgeooso

,  

wherein I P  is the specific impulse of the thruster, g e  is the 
earth's gravitational constant, T r  and Tz  are the lower 
and upper limits of the thrust force that can be provided 
by each thruster; 

p, nT r  cos ~ is the minimum thrust value available from 
the thruster(s); 

pz nTz  cos ~ is the maximum thrust value available from 
the thrusters(s); 

e, is a unit vector of all zeros except the i t'' row, which is 
unity; and 

F(t)-slack variable that bounds thrust magnitude. 
4. The method of claim 3, wherein 

mn IIrt(f)II 2  
tf ,T( ),r(. ) 

  

subject to the first set of constraints is computed as 

~n11EYN  11', N , ,1  

subject to a second set of constraints comprising: 

II E.Ykt711 :~ eT  Ykq 

for k=0,... ,N 

60 
subject to the first set of constraints comprising the con- 	 ))~  < 

straints of: 	
1 (FYk -zp(tk))+ 

(FYk - zo(tk  
 2 	- 

F(t)= g+T (t)lm(t), th(t)—al`(t) 
	 e4Yk J <u2(t)[1—  (FYk — zo(tk))] 

Eyk eXk=1,... ,N 

T(t)II `T(t), 0<P11=r(t)'p2 	 65 	

FyN  ? In md,y  

r(t)EXVtE[0,tff 
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-continued wherein g is the acceleration of gravity of the planet or 

Y T  el = 0 object the spacecraft is landing on. 
5. An apparatus for computing a thrust profile to land a 

EvYN = spacecraft at or near a surface target, wherein the spacecraft is 
r0  5 	subject to a non-convex thrust constraint, comprising the 

Yk = (Dk 	r0 	+ !~k 	
0 	

+ gkrl 
steps of: 

a spacecraft processor; 
In m „,er  

a memory, communicatively coupled to the processor, the 
k = 1, ... 	, N memory for storing instructions comprising 

10 	instructions for computing a minimum landing error 
descent solution for the spacecraft subject to a con- 

wherein vexified non-convex constraint, wherein the descent 
solution includes a landing error range; and 

instructions for determining the thrust profile for the 
tk  = kOt, 15 	spacecraft subject to the non-convex constraint from 

k = 0, ... 	, N the computed minimum landing error descent solu- 
tion for the spacecraft subject to the convexified non- 

[ (t) 
~ (t) _ convex constraint; 

m(t) a thruster, communicatively coupled to the spacecraft pro- 
T=(t) u(r) = 20 	cessor, for maneuvering the spacecraft according to the 
m(t) determined thrust profile. 

z(t) = In m(t) 6. The apparatus of claim 5, wherein the instructions for 
determining the thrust profile for the spacecraft subject to the 

P 
 0  non-convex constraint from the computed minimum landing 

25 error descent solution subject to the convexified non-convex 
Pm thrust constraint comprise: 

instructions for computing a minimum fuel descent solu- 

4 wherein pf  is avector of parameters and p-7 
tion for the spacecra ft  subject to the convexified non- 
convex constraint and the landing error range; and 

30 	instructions for determining the thrust profile for the space- 
E=!73x3 03,L/, F [01x61],  Eu !73x3 03,L/, Ev 103x3 craft subject to the non -convex constraint from the com - 

13x3 03x11 puted minimum fuel descent solution for the spacecraft 
subject to the convexified non-convex constraint. 

7. The apparatus of claim 6, wherein the instructions com- 
u(tk) 

Yk~ 
35 puting a minimum landing error descent solution for the 

' -"(tk) spacecraft subject to the convexified non-convex thrust con- 
straint comprises the instructions for computing 

wherein u(t,)=is the control input, and 

40 	 min 	Jr(tf)JJ' 

-(tk) = 
m(tk) 

subject to the first set of constraints comprising the con- 
straints of: 

It, (t)=p,e ~0, wherein zo a lower bound on In m(t) 45 
µ2(t)=pe ~0, wherein zo=a lower bound on In m(t)  

T (t)IF(t), O<p1'r(t)<pz 

50 	r(t)EXVtE[O,tf1 

m(0)—mweb m(tf)'Md, 

55 

r(tf)7ei 0, r(tf)—O 

wherein 
r(t) is a position vector of the spacecraft as a function of 

60 	flight time; 
f(t) is a velocity vector of the spacecraft as a function of 

flight time; 
f(t) is an acceleration vector of the spacecraft as a function 

of flight time; 
65 	t is the time from beginning of powered landing; 

t(0) is the time at the beginning of powered landing 
t(t)°tfis the time at the ending of powered landing; 

r(tk) 

Yk = r(tk) 

Z(tk) 

r(t,) is r(t)tk  
Y(t,) is Y(t) at tk  

z(t,) is z(t) at t=tk  
e4T A transpose of a vector of all zeros except the fourth 

element, which is unity 
y, ,TA transpose of yk  at the final time step N 

(D, Ake T, Y, are discrete time state transition matrices 
describing the solution tof(t)=u(t)+g and 

m(t) 
z = 

m(t) 
= -ac-(t) 
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-continued 
_ T'(t)  

U(t)  1100  
z(t) = Iun(t) 

5 

Po 

Pm 

10 
wherein  pi  is a  vector  of parameters and pjER4  

E-[ 1 3x3 03xv,
))  E— [ 0 1x6 1 ], E,- 113,3 03xv

)), E,- 103,3 

13x3 03, 1] 

15 

u(tk) 
Ykrl-

(tk) ~ 

20 	wherein u(t,)=is the control input, and 

-(tk) = m(tk) 

25 

µ 1 (t)=p,e ~0, wherein zo—constant 
µ2(t)=pe ~0, wherein z o —constant 

30 	 r(tk) 

Yk = r(tk) 

Z(tk) 

27 
T,(t) is a net thrust force vector acting on the spacecraft as 

a function of flight time; 
m(t) is a mass of the spacecraft as a function of flight time; 
m(t) is a mass change of the spacecraft as a function of 

flight time; 
X is the set of feasible positions of the spacecraft; 
m(0) is the spacecraft mass at the beginning of the thrust 

profile; 
m(tf) is the spacecraft mass at the end of the thrust profile; 

and J' 
is the initial mass of the spacecraft without fuel; m_et  is the initial mass of the spacecraft with fuel; 

a- 
l"ge coso' 

wherein I P  is the specific impulse of the thruster, g e  is the 
earth's gravitational constant, T, and T 2  are the lower 
and upper limits of the thrust force that can be provided 
by each thruster; 

p, nT l  cos ~ is the minimum thrust value available from 
the thruster(s); 

p2=nT2  cos ~ is the maximum thrust value available from 
the thrusters(s); 

e, is a unit vector of all zeros except the i t'' row, which is 
unity; and 

F(t)=slack variable that bounds thrust magnitude. 
8. The apparatus of claim 7, wherein 

min ( II r tf)II 2  
tf ,T,( ),r(. ) 

  

subject to the first set of constraints is computed as 

35 	r(t,) is r(t)tk  
Y(t,) is (t) at tk  
z(t,) is z(t) at t=t k  
e4T A transpose of a vector of all zeros except the fourth 

element, which is unity; 

40 	
y, ,T—A transpose of yk  at the final time step N 
~,, Ake T, Y, are discrete time state transition matrices 

describing the solution tof(t)n(t)+g and 

45 	Z = 
m(t) 

= —ac-(t) 

~nllEyNlh, n 

subject to a second set of constraints comprising: 

11 E.Ykg1I <eT Ykri  for  k=0,... ,N 

Pi (t) 
~1— 

 (Fyk —  Zo (tk )) +  (Eyk 
—  Zo (tk))2  

2 

ea Yk 1 < P2(01 1  — (EYk — Zo (tk))] 

tk =kOt,k=0,...,N 

F(t) 

-(t) m(t) 

wherein g is the acceleration of gravity of the planet or 
object the spacecraft is landing on. 

50 	9. An apparatus for computing a thrust profile to land a 
spacecraft at or near a surface target, wherein the spacecraft is 
subject to a non-convex thrust constraint, comprising: 

means for computing a minimum landing error descent 
solution for the spacecraft subject to a convexified non- 

55 	convex constraint, wherein the descent solution includes 
a landing error range; and 

means for determining the thrust profile for the spacecraft 
subject to the non-convex constraint from the computed 
minimum landing error descent solution for the space- 
craft subject to the convexified non-convex constraint. 

60  10. The apparatus of claim 9, wherein the means for deter-
mining the thrust profile for the spacecraft subject to the 
non-convex constraint from the computed minimum landing 
error descent solution subject to the convexified non-convex 
thrust constraint comprises: 

65 means for computing a minimum fuel descent solution for 
the spacecraft subject to the convexified non-convex 
constraint and the landing error range; and 

Eyk  E X 

k=1, ... ,N 

EYN  ? IlUnd,y  

YNel = 0, EvYN = 0  

ro 

Yk = (Pk 	PO 	+ Ak L 
0  J 

+ qk 77 

11IM t 	L  

k=1,... ,N 

wherein 
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means for determining the thrust profile for the spacecraft 
subject to the non-convex constraint from the computed 
minimum fuel descent solution for the spacecraft subject 
to the convexified non-convex constraint. 

11. The apparatus of claim 10, wherein the means for 
computing a minimum landing error descent solution for the 
spacecraft subject to the convexified non-convex thrust con-
straint comprises means for computing 

min r t 2  
tf,T,O,r(.) ~~ (f)~~ 

30 
12. The method of claim 11, wherein 

z 
If 

 m~nrO ~~ r(tf) ~ l 

5  subject to the first set of constraints is computed as 

~~ IIEYNIh, 

10 subject to a second set of constraints comprising: 

~ JE„YkgJJ<—eT ykr/  for  k=0,... ,N 

subject to the first set of constraints comprisi ng the con- 	 (EYk  2°(tk))z ~ 
<_ P 	g 	15  PI 	(tk ~~ + 

straints of: 
e4Yk 1 <P2(t)[1  — (EYk — ZO(tk))] 

P(t)=g+T (t)lm(t), th(t)=ai'(t) 

T (t)II'r(t), o<Pi `=r(t)'P2 	 20 

r(t)EXVtE[o,tf] 

M (0)=maven m(tf)`mdry 	
25 

r(0)—ro  r(o)—ro  

Eyk eXk=1,... ,N 

EYN  ? "Und,y  

YNel = 0, E»YN = 0  

ro 	
r l 

Yk = (Dk 	ro 	+nkl 
OJ

+`~kr/ 

11IM"t 	L  

k=1,... ,N 

wherein 

r(tf) Te l-0, r(tf)=0 

wherein 	
30 

r(t) is a position vector of the spacecraft as a function of 
flight time; 

f(t) is a velocity vector of the spacecraft as a function of 
flight time; 

f(t) is an acceleration vector of the spacecraft as a function 35 
of flight time; 

t is the flight time of the spacecraft 
t(0) is the time at the beginning of powered landing 
t(f)=tfis the time at the ending of powered landing; 
T,(t) is a net thrust force vector acting on the spacecraft as 40 

a function of flight time; 
m(t) is a mass of the spacecraft as a function of flight time; 
m(t) is a mass change of the spacecraft as a function of 

flight time; 
X is the set of feasible positions of the spacecraft; 	

45 

m(0) is the spacecraft mass at the beginning of the thrust 
profile; 

m(tf) is the spacecraft mass at the end of the thrust profile; 

and J' 
is the initial mass of the spacecraft without fuel; 

m, ~,et  is the initial mass of the spacecraft with fuel; 	
so 

tk =kOt, k=0,... ,N 

F(t) 

-(t) m(t) 

_ T, (r) 
U(t) 	m(t) 

z(t) = iun(t) 

Po 

P= 

Pm 

wherein pf  is a vector of parameters and pfER4  

E-11 3x3 03xv, E—(1x6 17, E,- 113,3 03xv, E,- 103,3 

13x3 0 3,17 

u(tk) 
Yktl 

= 

wherein u(t,)=is the control input, and 

a- 
l"ge coso' 

55 

wherein I P  is the specific impulse of the thruster, g e  is the 
earth's gravitational constant, T, and T 2  are the lower 
and upper limits of the thrust force that can be provided 
by each thruster; 60 

p,=nT 1  cos ~ is the minimum thrust value available from 
the thruster(s); 

P 2=nT2  cos ~ is the maximum thrust value available from 
the thrusters(s); 

e, is a unit vector of all zeros except the i t'' row, which is 65 
unity; and 

L(t)—slack variable that bounds thrust magnitude. 

r(tk) 
-(tk) = tn(tk) 

µ 1 (t)=p,e ~0, wherein zo—constant 
µ2(t)=pe ~0, wherein z o —constant 

r(tk) 

Yk = r(tk) 

Z(tk) 

r(t,) is r(t)tk  
f(t,) is (t) at tk  
z(r,)is z(t) at t—tk 
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e4T A transpose of a vector of all zeros except the fourth 
element, which is unity 

y, ,TA transpose of yk  at the final time step N 

(D, Axe T, Y, are discrete time state transition matrices 
describing the solution tof(t)=u(t)+g and 	 s 

m(t) 
z = m(t) = — ac- (t) 

wherein g is the acceleration of gravity of the planet or 
object the spacecraft is landing on. 
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